

The City of Roswell, GA

2024 Annual Water Quality & Consumer Confidence Report

Roswell Drinking Water Meets All Federal & State Regulations

Mayor Kurt Wilson

On behalf of the Roswell Water Utility Division, I'm proud to share with you the City of Roswell's 2024 Consumer Confidence Report (CCR). This annual report provides a behind-the-scenes look at where our water comes from—and more importantly, it shows that Roswell's water continues to exceed all federal and state safety regulations.

Roswell is consistently ranked among the top cities to live in America, and the work of our Water Utility Division is one of the many reasons why.

From ensuring clean, reliable drinking water to upgrading our stormwater systems and maintaining critical infrastructure, our dedicated team works around the clock to support the health, safety, and quality of life of our entire community.

I invite you to take a moment to read this year's report and see the care, commitment, and innovation that go into keeping your water dependable—every single day.

Contact Information

US Environmental Protection Agency (EPA) Drinking Water Hotline

1-800-426-4791 or www.EPA.gov/SafeWater

City of Roswell Water Emergencies

770-641-3707 - Monday-Friday, 8 a.m. to 5 p.m.

770-640-4100 - After Hours and Weekends

City of Roswell Customer Service

770-641-3759 - Billing, Questions, New Service Connection/Disconnect

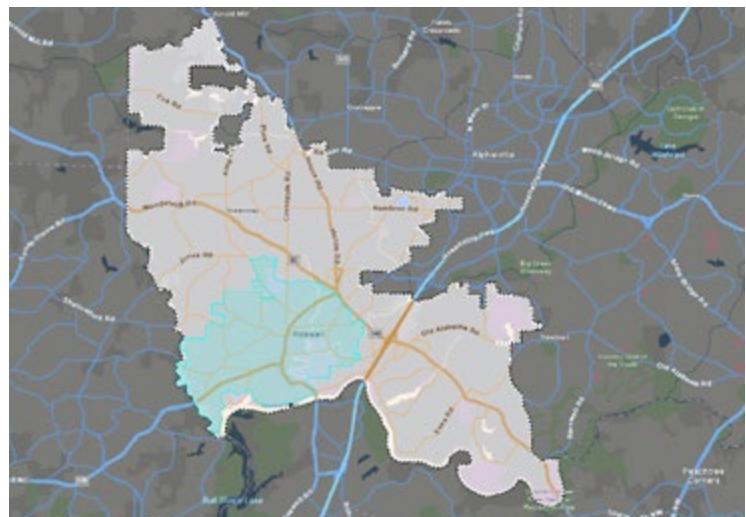
Water Utility Information

www.RoswellGov.com/WaterUtility

Questions about this report?

Please call Jessie Cash, Water Operations Manager

770-641-3816 - Monday-Friday, 8 a.m. to 5 p.m.



Where Does My Water Come From?

The Roswell Water Utility serves approximately 18,500 residents in Roswell. The remaining 80% of the City's population is served by Fulton County's Water and Sewer Department. Roswell's Water Treatment Plant's primary source of water is Big Creek. The Roswell Water Utility also operates a groundwater well. Supplemental water can be purchased by the City from Tom Lowe Atlanta – Fulton County Treatment Plant in Johns Creek. The source for this plant is the Chattahoochee River. Since the City has three water sources, Roswell's system is classified as a "blended water source".

Roswell Water Utility by the Numbers

- Water comes from the Big Creek Watershed
- Approximately 18,500 residents served
- Up to 3.3 million gallons of water treated daily
- 89 miles of water lines maintained

Roswell Water Utility service area in blue

Did You Know?

Roswell's original Cecil B. Wood Water Treatment Plant opened in 1936 and operated until 2015.

The Treatment Process

The Source Water is removed from Big Creek on Oxbo Rd.	Raw Water Storage Water is pumped from the creek to the 10 million-gallon raw water storage tank.	Oxidation Sodium hypochlorite is added to help remove iron and manganese through oxidation.
Coagulation & Flocculation Chemicals are added to make the particulates clump together. The clumps of particles are called "floc."	Sedimentation The newly formed floc settles by gravity to the bottom of the sedimentation basins.	Filtration Water flows through filters which remove even more of the microscopic particles.
Post-Treatment Disinfection Sodium hypochlorite is added again to disinfect any remaining disease-causing organisms.	Final Treatment Fluoride is added to help with tooth decay. Polyorthophosphate is added to protect pipes from corrosion.	Finished Water Water then arrives at your faucet, ready to drink.

Source Water Assessment

What is Source Water Assessment?

The Source Water Assessment identifies sources of pollution upstream of the water treatment plant. It can help communities understand the potential for contamination of their drinking water supplies and can be used to prioritize the need for protecting drinking water sources.

What is Water Pollution?

Water pollution is caused when substances such as chemicals, pathogens, sediment, and metals enter into the water. There are two types of water pollution, point source and non-point source pollution.

Roswell has a high potential for non-point sources of pollution and medium potential for point source pollution. A full report is provided in the City's Source Water Assessment Plan (SWAP), available at www.RoswellGov.com/SWAP.

Point Source Pollution

is pollution that comes from an identifiable source. You can "point" to where the pollution is coming from. An example of point source pollution would be a factory leaking contaminates into a river.

Non-Point Source Pollution

is pollution that comes from various sources, rather than one identifiable point. Non-point source pollutants enter waterways through run-off after rain events. An example of a non-point source pollutant is dog waste or agricultural run-off.

What is a Watershed?

A watershed is an area of land where all of the water drains to a single water source, such as a river, lake, pond, or stream. All activities within a watershed can influence the water quality of the entire watershed and its common drainage point. For example, someone using harmful herbicides in their yard in Roswell, can eventually leach into the Chattahoochee River and affect the health of the Chattahoochee Watershed.

Did You Know?

Roswell is in the Big Creek Watershed, a part of the Chattahoochee Watershed. Runoff from the City drains into the Chattahoochee River, which ultimately drains into the Gulf of Mexico.

Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present include:

Microbial Contaminants

(Biological Contaminants)- These include viruses, bacteria, and other microorganisms that can enter water sources through human and animal waste. Common sources include sewage treatment plants, leaking septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants

(Minerals and Metals)- This category includes salts, heavy metals (such as lead, arsenic, and mercury), and other naturally occurring elements. These contaminants can enter water through natural geological processes or human activities like industrial waste discharge, mining, farming, and road salt runoff.

Pesticides and Herbicides

(Agricultural and Residential Chemicals)- These are chemicals used to control weeds, insects, and pests in agriculture, landscaping, and home gardening. When washed into rivers, lakes, or groundwater through stormwater runoff, they can contaminate drinking water.

Organic Chemical Contaminants

(Industrial and Synthetic Chemicals)- This group includes synthetic (SOCs) and volatile organic compounds (VOCs), which are used in industrial manufacturing, petroleum production, and household products like paints, solvents, and disinfectants.

Radioactive Contaminants

(Radionuclides)- These are radioactive substances that can naturally occur in certain rocks and soils or result from human

activities such as uranium mining, oil and gas production, and nuclear power generation. Common radioactive contaminants include radon, uranium, and radium.

Nitrates- Nitrates are inorganic contaminants that form when nitrogen compounds from fertilizers, manure, and sewage break down in soil and water. They are highly soluble and easily migrate into groundwater through agricultural runoff, septic systems, and wastewater discharges.

High nitrate levels in drinking water can cause methemoglobinemia (blue baby syndrome) in infants, which reduces the blood's ability to carry oxygen. Long-term exposure may also contribute to thyroid disorders and potential carcinogenic effects.

Arsenic- Arsenic is a naturally occurring metalloid that enters drinking water primarily through the erosion of arsenic-rich rocks and sediments. Industrial activities such as mining, pesticide use, and improper waste disposal can also contribute to arsenic contamination. It is commonly found in groundwater sources, especially in areas with high geological arsenic deposits.

Long-term exposure to arsenic in drinking water is associated with skin lesions, developmental effects, cardiovascular diseases, and various cancers (bladder, lung, and skin cancer). Arsenic disrupts cellular function by interfering with enzyme activity and DNA repair.

(continued)

Radon- Radon is a radioactive gas that forms from the natural decay of uranium in soil and rock. It can dissolve into groundwater and be released when water is used for drinking, showering, or cooking. Radon contamination is most common in well water from areas with high uranium content in bedrock.

Radon is a leading cause of lung cancer after smoking, as inhalation of radon gas from drinking water aeration increases exposure to ionizing radiation. Although ingestion of radon in water poses a lower risk, prolonged exposure can still contribute to internal organ cancers. The EPA has proposed a recommended limit of 300 pCi/L (picocuries per liter, and it's used specifically to measure radon levels) for radon in drinking water, though enforceable MCL currently exists..

The City of Roswell's water was tested for Radon in March of 2023. The level detected was 3 pCi/L.

MRDL- MRDL stands for Maximum Residual Disinfectant Level, which is the highest amount of disinfectant that is allowed in drinking water. The EPA sets MRDLs for disinfectants like chlorine, chlorine dioxide, and chloramine.

MRDLG- MRDLG- Maximum Residual Disinfection Level Goal is the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits if the use of disinfectants to control microbial contaminants.

The City of Roswell Water Utility has received waivers from the Georgia EPD for the following:

This entry point has complied with the following criteria: Baseline monitoring demonstrates that the system's drinking water complies with the chemical monitoring standards of the Georgia Rules for Safe Drinking Water (Rules) for asbestos, cyanide and all synthetic organic compounds (SOCs), including dioxin; The Water System is a paid participant in the "Georgia EPD Drinking Water Laboratory and Related Services Agreement"; The Water System's raw and treated water is not in a high potential pollution risk situation as determined by one of the following assessment plans: Vulnerability Assessment, Well Head Protection Plan, or Source Water Assessment. Therefore, the Water System and associated entry point(s)/sampling point(s) listed above are issued a chemical waiver for the following regulated contaminants.

Synthetic Organic Chemicals: Alachlor, Aldicarb Sulfone, Aldicarb Sulfoxide, Atrazine, Benzo (A) Pyrene, Carbofuran, Chlordane, Dalapon, Di (2-Ethylhexyl) Adipate, Dibromochloropropane (DBCP), Dinoseb, Diquat, Di (2-Ethylhexyl) Phthalate, Endothall, Endrin, Ethylene Dibromide (EDB), Glyphosate, Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane, Methoxychlor, Oxymyl (Vydate), Pentachlorophenol, Picloram, Polychlorinated Biphenyls (PCBs), Simazine; 2,4-D; Toxaphene; 2,4,5-TP (Silvex); 2,3,7,8-TCDD (Dioxin).

Inorganic Chemicals: Asbestos & Cyanide.

Waiver Period:

The City has a waiver from January 1, 2023 to midnight December 31, 2025 allowing a reduction from synthetic organic chemicals and inorganic chemicals.

Water Quality Results

AL - Action Level

The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement that a water system must follow.

MCL - Maximum Contaminant Level

The highest level of a contaminant that is allowed in drinking water. The MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG - Maximum Contaminant Level Goal

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Level Goal

The level of a drinking water disinfectant below which there is no known or expected risk to health.

NTU - Nephelometric Turbidity Units

A measure of turbidity or cloudiness of water.

PPB - Parts per billion

(same as micrograms per liter)

One part per billion is equivalent to one minute in 2,000 years or one penny in \$10 million.

PPM - Parts per million

(same as milligrams per liter)

One part per million is equivalent to one minute in 2 years or one penny in \$10,000.

THAA - Total Haloacetic Acids

A by-product of disinfection by chlorination.

TT - Treatment Technique

A required process intended to reduce the level of a contaminant in drinking water.

TTHM - Total Trihalomethanes

A by-product of disinfection by chlorination.

REGULATED SUBSTANCES							
Substance (units)	MCLG (ideal level)	MCL (highest allowed)	Roswell System Average	Range of Levels Detected	Violation	# of Samples Exceeding MCL	Probable Sources
Total Coliform Bacteria	0.0	Presence of bacteria in <5% of monthly samples	0	<5%	No	0	Naturally present in the environment
Fluoride (ppm)	4.0	4.0	0.88	0.70-1.24	No	0	Erosion of natural deposits; water additive which promotes strong teeth
Nitrate (ppm)	10.0	10.0	0.9	0.9	No	0	Runoff from fertilizer use; leaching from natural deposits
Total Organic Carbon (ppm)	N/A	TT \geq 1.0 (1.0 in the minimum removal ratio)	0.75	0.36-1.03	No	0	Naturally present in the environment
Chlorine (ppm)	4.0	4.0	1.57	0.50-1.95	No	0	Added to water as a disinfectant
Turbidity	N/A	TT - 0.3 NTU	0.02	0.00-0.15	No	0	Soil runoff and erosion
Total Trihalomethanes (TTHMs) (ppb)	N/A	80	53.06	22.10-82.60	No	0	By-product of disinfection by chlorination
Total Haloacetic Acids (THAAs) (ppb)	N/A	60	34.83	12.00-50.80	No	0	By-product of disinfection by chlorination

PFAS in Roswell Drinking Water

PFAS Results for the City of Roswell

Date	Location	Analyte	Result in ug/L (micrograms per liter)	Result in ng/L (part per trillion)
9/11/2023	301	PFBS	0.0041	4.10
9/11/2023	301	PFHxA	0.0043	4.30
9/11/2023	301	PFPeA	0.0037	3.70
9/11/2023	301	PFBA	0.0049	4.90
9/11/2023	301	PFHxA	0.0058	5.80
9/11/2023	301	PFPeA	0.0047	4.70
9/11/2023	303	PFBS	0.0058	5.80
12/18/2023	301	PFBS	0.0041	4.10
12/18/2023	301	PFHxA	0.0043	4.30
12/18/2023	301	PFPeA	0.0037	3.70

3/13/2024	303	PFBS	0.0050	5.00
3/13/2024	301	PFBS	0.0039	3.90
3/13/2024	301	PFHxA	0.0037	3.70
3/13/2024	301	PFPeA	0.0030	3.00

6/4/2024	301	PFBS	0.0049	4.90
6/4/2024	301	PFHxA	0.0051	5.10
6/4/2024	301	PFPeA	0.0049	4.90

How is the Hazard Index for PFHxS, GenX Chemicals, PFNA, and PFBS calculated and implemented as a Maximum Contaminant Level

Chemical	Maximum Contaminant Level (MCLG)	Maximum Contaminant Level (MCL)
PFOA	0	4.0 ppt
PFOS	0	4.0 ppt
PFHxS	10 ppt	10 ppt
HFPO-DA (GenX)	10 ppt	10 ppt
PFNA	10 ppt	10 ppt
Mixture of two or more: PFHxS, PFNA, HFPO-DA, and PFBS	Hazard index of 1 (unitless)	Hazard index of 1 (unitless)

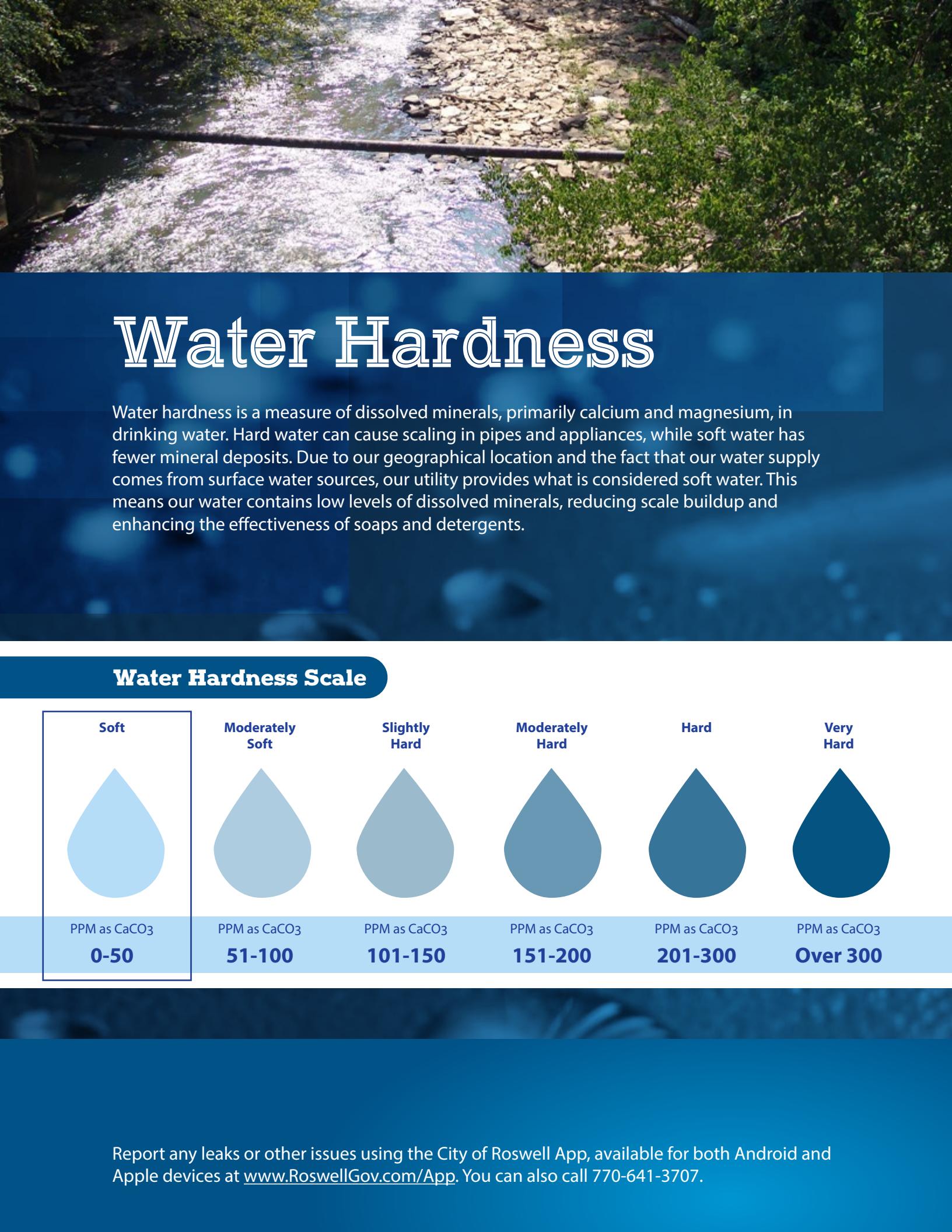
Compound	Health-Based Water Concentration (ppt)
PFHxS	10
GenX Chemicals	10
PFNA	10
PFBS	2000

Per- and polyfluoroalkyl substances (PFAS), including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are a group of synthetic chemicals widely used in industrial and consumer products due to their resistance to heat, water, and oil. These substances are persistent in the environment and human body, earning them the designation of "forever chemicals." Exposure to PFAS, particularly PFOS and PFOA, has been associated with adverse health effects, including developmental impacts, immune system suppression, liver damage, and potential carcinogenicity.

The U.S. Environmental Protection Agency (EPA) has established a health advisory level of 4 parts per trillion (ppt) for PFOA and PFOS in drinking water, reflecting the lowest concentration at which adverse health effects may occur over a lifetime of exposure. While these advisories are non-enforceable, they serve as guidelines for water utilities to assess contamination and mitigate risks. Additionally, state and local agencies may implement their own more stringent regulations.

We remain committed to providing high-quality drinking water that meets or exceeds all safety standards. As research on PFAS continues, we will adapt our monitoring and treatment strategies to ensure the long-term health and well-being of our community. Find out more about PFAS at www.EPA.gov/PFAS.

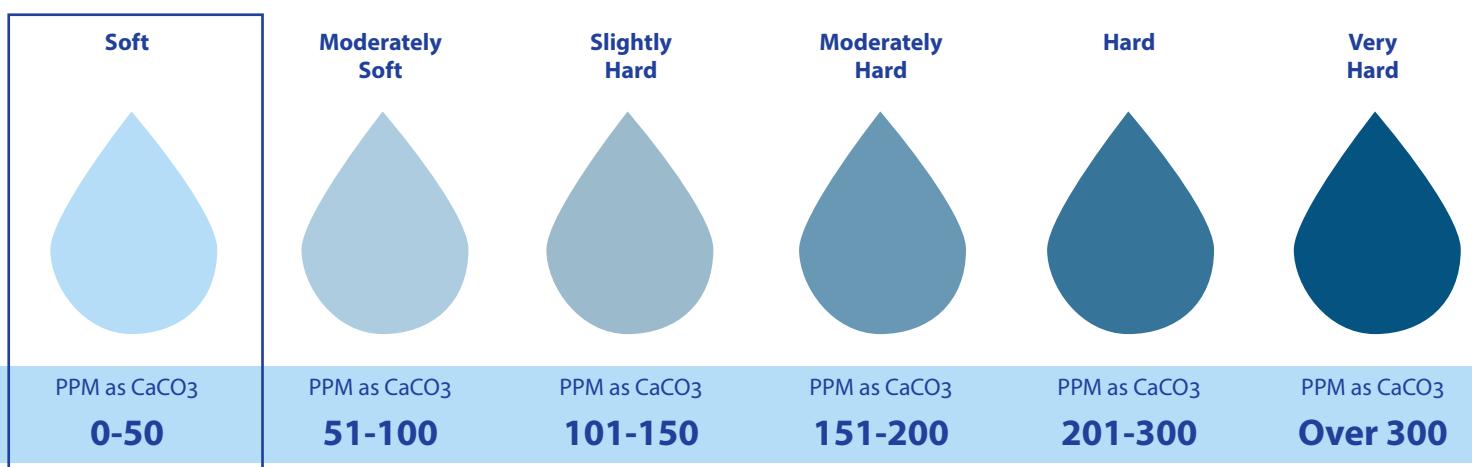
milligrams per liter (mg/L) = parts per million (ppm)


microgram per liter (ug/L) = parts per billion (ppb)

nanogram per liter (ng/L) = parts per trillion (ppt)

picogram per liter (pg/L) = parts per quadrillion (ppq)

301 Water Treatment Plant


303 Groundwater Filtration Plant

Water Hardness

Water hardness is a measure of dissolved minerals, primarily calcium and magnesium, in drinking water. Hard water can cause scaling in pipes and appliances, while soft water has fewer mineral deposits. Due to our geographical location and the fact that our water supply comes from surface water sources, our utility provides what is considered soft water. This means our water contains low levels of dissolved minerals, reducing scale buildup and enhancing the effectiveness of soaps and detergents.

Water Hardness Scale

Report any leaks or other issues using the City of Roswell App, available for both Android and Apple devices at www.RoswellGov.com/App. You can also call 770-641-3707.

Lead & Copper

Lead is a common naturally occurring metallic element that can be found in air, soil, and water. It is also known to be harmful to human health. Lead was commonly used in gasoline and paint until the 1970s and is still sometimes found in products such as ceramics, batteries, ammunition, and cosmetics. Lead was used for centuries in plumbing because of its pliability and resistance to leaks; in fact, lead's chemical symbol, Pb, is derived from the Latin word for plumbing.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. The City of Roswell is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact the Roswell Water Utility at 770-641-3816. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at www.EPA.gov/SafeWater/Lead.

The City of Roswell tests locations with at-risk plumbing systems to ensure corrosion control techniques are effective. Roswell's water system contains trace amounts of lead in older pipes and brass fittings used at system meters.

The Roswell Water Utility tested for lead in its water in the summer of 2022, which is required by the Environmental Protection Division (EPA) to be done every three years. The rule requires systems to monitor for lead and copper in drinking water. Systems are required to monitor drinking water at a customer's tap. If lead concentrations exceed an action level of 15 parts per billion (PPB) or copper concentrations exceed an action level of 1300 parts per billion (PPB) in more than 10% of customer taps sampled, the system must undertake additional actions to control corrosion.

LEAD AND COPPER								
Substance(units)	MLG(Ideal Level)	AL	Roswell System 90th Percentile	Sample Range (in ppb)	Sample Date	Violation	#of Samples Exceeding MCL	Probable Sources
Lead (ppb)	0	AL- 15	3.2	0-20	2022	No	1 of 30	Corrosion of Household plumbing systems; erosion of natural deposits
Copper (ppb)	1300	AL- 1300	410	26- 540	2022	No	0 of 30	Corrosion of Household plumbing systems; erosion of natural deposits; leaching from wood preservations

To access all Lead and Copper Sample results, please visit www.GADrinkingWater.net/DWWPUB.

Service Line Inventory

Roswell Water Utility is committed to providing our customers with reliable, and affordable drinking water. Keeping your household's water supply free from lead is integral to our mission. We also want you to be confident with the quality of your drinking water and in the type of material used for your water service lines. In the past several years, the broad awareness of the risks of lead in drinking water has been elevated and it has led the Environmental Protection Agency (EPA) to make changes to the 1992 Lead and Copper Rule (LCR).

The Roswell Water Utility has no records indicating the presence of lead-containing service lines in our system, as well as no history of testing data indicating the presence of lead in our drinking water supply.

The Roswell Water Utility is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family. Start by identifying the materials within your home plumbing.

In the summer of 2024, Roswell started a new Lead and Copper Inspection Program in response to the EPA's new rule mandating water utilities across the nation to help identify and catalog the material of all public and private water service lines/laterals in their service area. The City has been providing flyers to customers when inspection crews are in their area. As of today, the City has not identified any lead service lines within its water system. As part of this inspection program, the City has provided an online portal at www.RoswellGov.com/GIS/ServiceLines, where residents can check the classification of their service line material.

To reduce the chances of ingesting lead, follow these guides:

- Consume only cold water directly from the faucet. Hot tap water can increase the potential for lead and other metals to leach into drinking water from the home plumbing system. (*Heating cold water does not release any lead.*)
- If the water has been sitting in the pipes in your home for longer than six hours, allow the water to run a few minutes before consuming. Turn on the cold water tap and wait for the temperature to change.
- Periodically clean out the aerators (*screens on the faucet*). These screens can trap sediment and debris over an extended period time.
- For more information, please visit www.RoswellGov.com/Lead-Copper.

Vulnerable Populations

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons (such as those undergoing chemotherapy treatments, who have undergone organ transplants, living with HIV/AIDS, or other immune system disorders), some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to reduce the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Did You Know?

Cryptosporidium is a microscopic organism that is common in surface water. The organism comes from animal wastes in the watershed and are removed by a well-maintained water treatment process. Those with weakened immune systems are especially vulnerable to becoming infected from this parasite.

Water Conservation

An average household with a water leak can account for nearly 10,000 gallons of water wasted every year. Common leaks found in the home are worn toilet flappers, dripping faucets, and other leaking valves. Fixing water leaks can save homeowners about 10% on their water bills.

Give your shower power

Taking a five-minute shower uses 10-25 gallons of water. Install a water-saving showerhead to reduce the flow.

Make it a full load

Washing machines can use as much as 41 gallons of water per load. Wash only full loads to save water.

Water plants efficiently

Use drip irrigation or micro-sprays where possible. They use 30-50% less water than sprinklers. Water only at night or in the early morning to reduce water evaporation from the sun and heat.

The right plants in the right places

Consider native plants that require less water to maintain. Also think about where plants are going – sun, shade, slope, and runoff all matter.

Turn it off

A bathroom faucet uses about two gallons of water per minute. Turn it off while you brush your teeth.

Don't flush money away

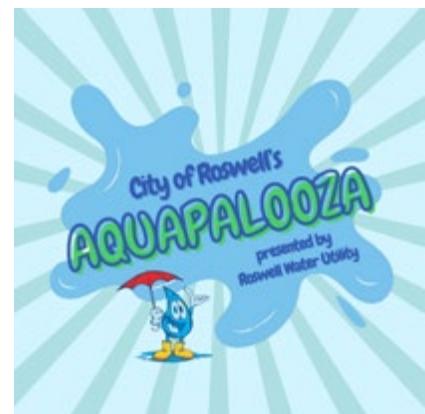
Upgrade your toilet to use less water per flush. Newer toilets use far less water than those made before 1993, with water bill savings of more than \$90 annually.

Alternate water sources

Rain barrels or cisterns are good ways to gather water without paying for it. For each inch of rainfall, six gallons of water can be harvested per square foot of roof area.

Did You Know?

Roswell Water users can sign up for Aquahawk to automatically monitor their water usage and check for leaks. Go to www.RoswellGov.com/Aquahawk.


How To Get Involved

Environmental Education Programs & Volunteer Opportunities

The City of Roswell's Environmental/Public Works Department offers free outreach programs, workshops, and stewardship projects to Roswell schools and community groups. We can assist you with community service projects, teacher workshops, scout badges, and curriculum resources. Programs on environmental issues are also available for civic organizations, homeowners' associations, and other groups. Some of our programs are sponsored by and presented in partnership with Keep Roswell Beautiful, Roswell's local environmental nonprofit partner.

Aquapalooza

Join us each May for Aquapalooza, Roswell Water Utility's annual water plant open house. Aquapalooza is a fun filled event with games, food, and giveaways for water drinkers of all ages!

For more information on how to get involved, please email enviroeducation@roswellgov.com.

City of Roswell Water Utility Division

105 Frank Lewis Dr. Roswell, GA 30075

Mayor

Kurt Wilson, Mayor of Roswell

City Council

Sarah Beeson, Post 1

Allen Sells, Post 2

Christine Hall, Post 3

David Johnson, Post 4

William Morthland, Post 5

Lee Hills, Post 6

Administration

Randy Knighton, City Administrator

Don Stephens, Chief Operating Officer

Sharon Izzo, Deputy City Administrator

Brian Watson, Director of Environmental/Public Works

Matthew Zaki, Deputy Director of Environmental/Public Works

Chris Boyd, Water Utility Manager

Jessie Cash, Water Operations Manager

Awards

- GAWWA Water Distribution System Gold Award: 2006, 2011, 2014, 2018, 2019, 2020, 2021
- GAWWA Water Distribution System Platinum Award: 2022, 2023, 2024
- GAWWA Water Treatment Plant of the Year Award: 2020, 2022, 2023, 2024, 2025
- GAWP Gold Award: 2017, 2018, 2019, 2020, 2022, 2023, 2024, 2025
- GAWP Platinum Award: 2010
- GAWP Consumer Confidence Report Award: 2006, 2008, 2011
- ASCE Award for Water Plant Project: 2015-2016
- GAWP Fox McCarthy Award: 2016
- GAWP Public Education Committee Print Media Award (for Drippy Dopperson: Water Ambassador Story): 2018
- GAWP Public Education Award: 2000, 2024